0

Non-Standard Rank Tests

Lecture Notes in Statistics 65

Erschienen am 03.12.1990, 1. Auflage 1990
106,99 €
(inkl. MwSt.)

Lieferbar innerhalb 1 - 2 Wochen

In den Warenkorb
Bibliografische Daten
ISBN/EAN: 9780387974842
Sprache: Englisch
Umfang: vi, 252 S.
Einband: kartoniertes Buch

Beschreibung

InhaltsangabeI. Locally most powerful rank tests - finite sample results.- § 1. Preliminaries.- § 2. Locally most powerful rank tests for H0.- § 3. Locally most powerful rank tests for H1.- § 4. Locally most powerful rank tests for H2 against dependence.- II. Asymptotic results for locally most powerful rank tests.- § 5. Approximate rank tests.- § 6. Asymptotic results for locally most powerful rank tests with respect to H0.- § 7. Asymptotic results for H1.- § 8. Asymptotic results for H2.- § 9. Asymptotic results for locally most powerful rank tests in the case a = 0.- III. Asymptotic results for rank tests under alternatives.- § 10. Limit distributions under alternatives.- § 11. Rank tests under almost regular models.- IV. Tests based on minimum ranks.- § 12. The minimum rank test (finite sample results).- § 13. The minimum rank test (asymptotic results).- V. Parametric results for almost regular models.- § 14. Local asymptotic normality under almost regular assumptions.- VI. Semiparametric models and Monte Carlo results.- § 15. Adaptive tests for semiparametric regression alternatives.- § 16. A comparison of rank tests and parametric tests: the Monte Carlo approach.- Statistical experiments with non-regular densities.- § A1. Introduction.- § A2. Preliminaries.- § A3. Convergence of triangular arrays to Gaussian experiments.- § A4. Convergence of non-regular experiments to Gaussian experiments.- § A5. Convergence to Poisson experiments.- § A6. A representation for certain stable Poisson experiments.- § A7. Applications for one-sided test problems.- References.- List of symbols.- Author index.

Produktsicherheitsverordnung

Hersteller:
Springer Verlag GmbH
juergen.hartmann@springer.com
Tiergartenstr. 17
DE 69121 Heidelberg