0
×

Warnmeldung

Bitte melden Sie sich mit Ihren Zugangsdaten an, um die Wunschliste nutzen zu können.
Sollten Sie noch kein Kundenkonto besitzen, dann können Sie sich gern registrieren.

Theory of High Temperature Superconductivity

Fundamental Theories of Physics 121

Erschienen am 04.12.2010, 1. Auflage 2010
160,49 €
(inkl. MwSt.)

Lieferbar innerhalb 1 - 2 Wochen

In den Warenkorb
Bibliografische Daten
ISBN/EAN: 9789048158836
Sprache: Englisch
Umfang: xix, 374 S.
Einband: kartoniertes Buch

Beschreibung

Flux quantization experiments indicate that the carriers, Cooper pairs (pairons), in the supercurrent have charge magnitude 2e, and that they move independently. Josephson interference in a Superconducting Quantum Int- ference Device (SQUID) shows that the centers of masses (CM) of pairons move as bosons with a linear dispersion relation. Based on this evidence we develop a theory of superconductivity in conventional and mate- als from a unified point of view. Following Bardeen, Cooper and Schrieffer (BCS) we regard the phonon exchange attraction as the cause of superc- ductivity. For cuprate superconductors, however, we take account of both optical- and acoustic-phonon exchange. BCS started with a Hamiltonian containing "electron" and "hole" kinetic energies and a pairing interaction with the phonon variables eliminated. These "electrons" and "holes" were introduced formally in terms of a free-electron model, which we consider unsatisfactory. We define "electrons" and "holes" in terms of the cur- tures of the Fermi surface. "Electrons" (1) and "holes" (2) are different and so they are assigned with different effective masses: Blatt, Schafroth and Butler proposed to explain superconductivity in terms of a Bose-Einstein Condensation (BEC) of electron pairs, each having mass M and a size. The system of free massive bosons, having a quadratic dispersion relation: and moving in three dimensions (3D) undergoes a BEC transition at where is the pair density.

Produktsicherheitsverordnung

Hersteller:
Springer Verlag GmbH
juergen.hartmann@springer.com
Tiergartenstr. 17
DE 69121 Heidelberg


Autorenportrait

Inhaltsangabe1. Introduction. 2. Superconducting Transitions. 3. Bloch Electrons. 4. Phonon Exchange Attraction. 5. Quantum Statistical Theory. 6. Cooper Pairs (Pairons). 7. Superconductors at 0 K. 8. Quantum Statistics of Composites. 9. Bose-Einstein Condensation. 10. The Energy Gap Equations. 11. Pairon Energy Gaps and Heat Capacity. 12. Quantum Tunneling. 13. Flux Quantization. 14. Ginzburg-Landau Theory. 15. Josephson Effects. 16. Compound Superconductors. 17. Lattice Structures of Cuprates. 18. High-Tc Superconductors Below Tc. 19. Doping Dependence of Tc. 20. Transport Properties Above Tc. 21. Out-of-Plane Transport. 22. Seebeck Coefficient (Thermopower). 23. Magnetic Susceptibility. 24. Infrared Hall Effect. 25. d-Wave Cooper Pairs. 26. Connections with Other Theories. 27. Summary and Remarks. Appendix A. References. Bibliography. Index.