0

Jacobische elliptische Funktionen, Legendresche elliptische Normalintegrale und spezielle Weierstraßsche Zeta- und Sigma-Funktionen

Praktische Funktionenlehre 3

Erschienen am 03.10.2013, 1. Auflage 1967
37,99 €
(inkl. MwSt.)

Lieferbar innerhalb 1 - 2 Wochen

In den Warenkorb
Bibliografische Daten
ISBN/EAN: 9783642502644
Sprache: Deutsch
Umfang: viii, 180 S., 5 s/w Illustr., 180 S. 5 Abb.
Einband: kartoniertes Buch

Beschreibung

Manuskriptes und fiir das Lesen der Korrektur.

Produktsicherheitsverordnung

Hersteller:
Springer Verlag GmbH
juergen.hartmann@springer.com
Tiergartenstr. 17
DE 69121 Heidelberg

Autorenportrait

Inhaltsangabe5 Jacobische elliptische Funktionen und zugehörige logarithmische Ableitungen.- 108. Definitionen.- 109. Funktionalgleichungen.- 110. Periodenverhalten und Substitutionen.- 111. Funktionswerte an den Stellen $$ 0,\pm \frac{1}{2},\;\pm \frac{{ix}}{2},\;\pm \frac{1}{2},\;\pm \frac{{ix}}{2} $$ bzw. $$ 0,\pm K,\;\pm iK',\;\pm K\pm iK' $$.- 112. Trigonometrische und hyperbolische Reihenentwicklungen.- 113. Potenzreihen-Entwicklungen.- 114. Imaginäre Argumenttransformation, reziproke Modultransformation und imaginäre Modultransformation.- 115. Ableitungen.- 116. Gausssche und Landensche Transformation. Substitutionen für $$ \zeta \pm \frac{1}{4}\;und\;\zeta \pm \frac{{ix}}{4} $$.- 117. Additionstheoreme. Transformationsgleichungen für doppeltes und halbes Argument. Weitere Substitutionen für $$ \zeta \pm \frac{1}{4}\;und\;\zeta \pm \frac{{ix}}{4}\;sowie\;fur\;\zeta \pm \frac{1}{4}\pm \frac{{ix}}{4} $$.- 118. Die Logarithmen der logarithmischen Ableitungen der Jacobischen elliptischen Funktionen.- 119. Übergänge vom (?, ?)-System auf das (z, k)-System.- 120. Funktionsverlauf der Jacobischen elliptischen Funktionen und der zugehörigen Ableitungen und logarithmischen Ableitungen im Reellen. Ausartungen.- 121. Differentialgleichungen erster und zweiter Ordnung.- 122. Die Integrale der Jacobischen elliptischen Funktionen.- 123. Die Integrale der logarithmischen Ableitungen der Jacobischen elliptischen Funktionen.- 6 Umkehrfunktionen der Jacobischen elliptischen Funktionen und elliptische Normalintegrale erster Gattung. Elliptische Amplitudenfunktion sowie Legendresche F- und E-Funktion. Elliptische Normalintegrale zweiter Gattung. Jacobische Zeta- und Heumansche Lambda-Funktion.- 124. Die 18 Umkehrfunktionen der Jacobischen elliptischen Funktionen und ihrer logarithmischen Ableitungen. (Elliptische Normalintegrale erster Gattung.) Additionstheoreme der Umkehrfunktionen.- 125. Elliptische Normalintegrale erster Gattung in hyperbolischer Form.- 126. Potenzreihen-Entwicklungen der Umkehrfunktionen.- 127. Die elliptische Amplitudenfunktion ? = am(z, k) und ihre Umkehrfunktion z = F(?, k). Die vier trigonometrischen Legendreschen Normalintegrale erster Gattung.- 128. Darstellung der 18 Umkehrfunktionen und der elliptischen Normalintegrale erster Gattung durch die Funktion F. Die vier hyperbolischen Legendreschen Normalintegrale erster Gattung und die Funktion F für imaginäres Argument.- 129. Die Legendresche E-Funktion für reelles und imaginäres Argument.- 130. Die 18 Integrale der Quadrate der Jacobischen elliptischen Funktionen und ihrer logarithmischen Ableitungen, die 12 durch Umformung der letzteren entstehenden hyperbolischen Integrale, die 24 Normalintegrale zweiter Gattung und die acht trigonometrischen und hyperbolischen Legendreschen Normalintegrale zweiter Gattung.- 131. Die 46 Normalintegrale erster und zweiter Gattung mit linearen trigonometrischen und hyperbolischen Funktionen.- 132. Jacobische Zeta-Funktion und Heumansche Lambda-Funktion.- 7 Normalintegrale dritter Gattung. Legendresche ?-Funktion. Zurückführung des allgemeinen elliptischen Integrals auf Normalintegrale erster, zweiter und dritter Gattung.- 133. Die 96 Normalintegrale dritter Gattung in Jacobischer Form.- 134. Die acht zu den logarithmischen Ableitungen der Jacobischen elliptischen Funktionen gehörigen Normalintegrale dritter Gattung.- 135. 48 Quotientenintegrale und 48 spezielle Normalintegrale dritter Gattung in der Jacobischen Form.- 136. Algebraische Form der elliptischen Normalintegrale dritter Gattung.- 137. Darstellung der vollständigen Normalintegrale dritter Gattung durch Jacobische Zeta- und Heumansche Lambda-Funktionen.- 138. Die ?-Funktion und die Integrale dritter Gattung in trigonometrischer Form.- 139. Die 48 speziellen Normalintegrale dritter Gattung in algebraischer Form.- 140. Weitere sechs spezielle Normalintegrale dritter Gattung.- 141. Zurückführung des allgemeinen elliptischen Integrals in der Legendreschen Form auf Normalintegrale erster,