0

Machine Learning in Medicine - Cookbook

SpringerBriefs in Statistics

Erschienen am 14.01.2014, 1. Auflage 2014
53,49 €
(inkl. MwSt.)

Lieferbar innerhalb 1 - 2 Wochen

In den Warenkorb
Bibliografische Daten
ISBN/EAN: 9783319041803
Sprache: Englisch
Umfang: xi, 137 S., 14 s/w Illustr., 137 p. 14 illus.
Einband: kartoniertes Buch

Beschreibung

InhaltsangabeCluster Models 1        Hierarchical Clustering and K-means Clustering to Identify Subgroups in Surveys (50 Patients)                                 2            Density-based Clustering to Identify Outlier Groups in Otherwise                 Homogeneous Data (50 Patients)3              Two Step Clustering to Identify Subgroups and Predict Subgroup   Memberships in Individual Future Patients (120 Patients)Linear Models 4              Linear, Logistic, and Cox Regression for Outcome Prediction with                Unpaired Data (20, 55, and 60 Patients)5             Generalized Linear Models for Outcome Prediction with Paired                 Data (100 Patients and 139 Physicians) 6             Generalized Linear Models for Predicting Event-Rates (50 Patients)                 Exact P-Values                                                                                                  7             Factor Analysis and Partial Least Squares (PLS) for Complex-Data Reduction (250 Patients) 8             Optimal Scaling of High-sensitivity Analysis of Health Predictors                 (250 Patients) 9             Discriminant Analysis for Making a Diagnosis from                 Multiple Outcomes (45 Patients) 10           Weighted Least Squares for Adjusting Efficacy Data with                 Inconsistent Spread (78 Patients)     11           Partial Correlations for Removing Interaction Effects from                 Efficacy Data (64 Patients) 12           Canonical Regression for Overall Statistics of Multivariate                 Data (250 Patients)                 Rules Models 13           Neural Networks for Assessing Relationships that are Typically Nonlinear (90 Patients)  14           Complex Samples Methodologies for Unbiased Sampling                 (9,678 Persons)                 15           Correspondence Analysis for Identifying the Best of Multiple Treatments in Multiple Groups (217 Patients)                 16           Decision Trees for Decision Analysis (1004 and 953 Patients)17      Multidimensional Scaling for Visualizing Experienced Drug                 Efficacies (14 Pain-killers and 42 Patients)                 18           Stochastic Processes for Long Term Predictions from Short                 Term Observations  19           Optimal Binning for Finding High Risk Cut-offs (1445 Families) 20           Conjoint Analysis for Determining the Most Appreciated                 Properties of Medicines to Be Developed (15 Physicians) Index                                                                                                                                          

Produktsicherheitsverordnung

Hersteller:
Springer Verlag GmbH
juergen.hartmann@springer.com
Tiergartenstr. 17
DE 69121 Heidelberg