This book presents ground-breaking advances in the domain of causal structure learning. The problem of distinguishing cause from effect (Does altitude cause a change in atmospheric pressure, or vice versa?) is here cast as a binary classification problem, to be tackled by machine learning algorithms. Based on the results of the
ChaLearn Cause-Effect Pairs Challenge, this book reveals that the joint distribution of two variables can be scrutinized by machine learning algorithms to reveal the possible existence of a causal mechanism, in the sense that the values of one variable may have been generated from the values of the other.
This book provides both tutorial material on the state-of-the-art on cause-effect pairs and exposes the reader to more advanced material, with a collection of selected papers. Supplemental material includes videos, slides, and code which can be found on the workshop website.
Discovering causal relationships from observational data will become increasingly important in data science with the increasing amount of available data, as a means of detecting potential triggers in epidemiology, social sciences, economy, biology, medicine, and other sciences.
1. The cause-effect problem: motivation, ideas, and popular misconceptions.- 2. Evaluation methods of cause-effect pairs.- 3. Learning Bivariate Functional Causal Models.- 4. Discriminant Learning Machines.- 5. Cause-Effect Pairs in Time Series with a Focus on Econometrics.- 6. Beyond cause-effect pairs.- 7. Results of the Cause-Effect Pair Challenge.- 8. Non-linear Causal Inference using Gaussianity Measures.- 9. From Dependency to Causality: A Machine Learning Approach.- 10. Pattern-based Causal Feature Extraction.- 11. Training Gradient Boosting Machines using Curve-fitting and Information-theoretic Features for Causal Direction Detection.- 12. Conditional distribution variability measures for causality detection.- 13. Feature importance in causal inference for numerical and categorical variables.- 14. Markov Blanket Ranking using Kernel-based Conditional Dependence Measures.
„E-Book“ steht für digitales Buch. Um diese Art von Büchern lesen zu können wird entweder eine spezielle Software für Computer, Tablets und Smartphones oder ein E-Book Reader benötigt. Da viele verschiedene Formate (Dateien) für E-Books existieren, gilt es dabei, einiges zu beachten.
Von uns werden digitale Bücher in drei Formaten ausgeliefert. Die Formate sind EPUB mit DRM (Digital Rights Management), EPUB ohne DRM und PDF. Bei den Formaten PDF und EPUB ohne DRM müssen Sie lediglich prüfen, ob Ihr E-Book Reader kompatibel ist. Wenn ein Format mit DRM genutzt wird, besteht zusätzlich die Notwendigkeit, dass Sie einen kostenlosen Adobe® Digital Editions Account besitzen. Wenn Sie ein E-Book, das Adobe® Digital Editions benötigt herunterladen, erhalten Sie eine ASCM-Datei, die zu Digital Editions hinzugefügt und mit Ihrem Account verknüpft werden muss. Einige E-Book Reader (zum Beispiel PocketBook Touch) unterstützen auch das direkte Eingeben der Login-Daten des Adobe Accounts – somit können diese ASCM-Dateien direkt auf das betreffende Gerät kopiert werden.
Da E-Books nur für eine begrenzte Zeit – in der Regel 6 Monate – herunterladbar sind, sollten Sie stets eine Sicherheitskopie auf einem Dauerspeicher (Festplatte, USB-Stick oder CD) vorsehen. Auch ist die Menge der Downloads auf maximal 5 begrenzt.