0

Linear Model Theory

Univariate, Multivariate, and Mixed Models

Erschienen am 22.08.2006, 1. Auflage 2006
159,00 €
(inkl. MwSt.)

Nachfragen

In den Warenkorb
Bibliografische Daten
ISBN/EAN: 9780471214885
Sprache: Englisch
Umfang: 424 S.
Einband: kartoniertes Buch

Beschreibung

InhaltsangabePreface. PART I: MODELS AND EXAMPLES. 1. Matrix Algebra for Linear Models. 2. The General Linear Univariate Model. 3. The General Linear Multivariate Model. 4. Generalizations of the Multivariate Linear Model. 5. The Linear Mixed Model. 6. Choosing the Form of a Linear Model for Analysis. PART II: MULTIVARIATE DISTRIBUTION THEORY. 7. General Theory of Multivariate Distributions. 8. Scalar, vector, and Matrix Gaussian Distributions. 9. Univariate Quadratic Forms. 10. Multivariate Quadratic Forms. PART III: ESTIMATION IN LINEAR MODELS. 11. Estimation for Univariate and Weighted Linear Models. 12. Estimation for Multivariate Linear Models. 13. Estimation for Generalizations of Multivariate Models. 14. Estimation for Linear Mixed Models. PART IV: TESTS IN GAUSSIAN LINEAR MODELS. 15. Tests for Univariate Linear Models. 16. Tests for Multivariate Linear Models. 17. Tests for Generalizations of Multivariate Linear Models. 18. Tests for Linear Mixed Models. 19. A Review of Multivariate and Univariate Linear Models. PART V: CHOOSING A SIMPLE SIZE IN GAUSSIAN LINEAR MODELS. 20. Sample Size for Univariate Linear Model. 21. Sample Size for Multivariate Linear Model. 22. Sample Size for Generalizations of Multivariate Models. 23. Sample Size for Linear Mixed Models. Appendix: Computing Resources. References. Index.

Produktsicherheitsverordnung

Hersteller:
Wiley-VCH GmbH
amartine@wiley-vch.de
Boschstr. 12
DE 69469 Weinheim

Autorenportrait

InhaltsangabePreface. PART I: MODELS AND EXAMPLES. 1. Matrix Algebra for Linear Models. 2. The General Linear Univariate Model. 3. The General Linear Multivariate Model. 4. Generalizations of the Multivariate Linear Model. 5. The Linear Mixed Model. 6. Choosing the Form of a Linear Model for Analysis. PART II: MULTIVARIATE DISTRIBUTION THEORY. 7. General Theory of Multivariate Distributions. 8. Scalar, vector, and Matrix Gaussian Distributions. 9. Univariate Quadratic Forms. 10. Multivariate Quadratic Forms. PART III: ESTIMATION IN LINEAR MODELS. 11. Estimation for Univariate and Weighted Linear Models. 12. Estimation for Multivariate Linear Models. 13. Estimation for Generalizations of Multivariate Models. 14. Estimation for Linear Mixed Models. PART IV: TESTS IN GAUSSIAN LINEAR MODELS. 15. Tests for Univariate Linear Models. 16. Tests for Multivariate Linear Models. 17. Tests for Generalizations of Multivariate Linear Models. 18. Tests for Linear Mixed Models. 19. A Review of Multivariate and Univariate Linear Models. PART V: CHOOSING A SIMPLE SIZE IN GAUSSIAN LINEAR MODELS. 20. Sample Size for Univariate Linear Model. 21. Sample Size for Multivariate Linear Model. 22. Sample Size for Generalizations of Multivariate Models. 23. Sample Size for Linear Mixed Models. Appendix: Computing Resources. References. Index.